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Abstract In this paper we discuss general tridiagonal matrix models which are
natural extensions of the ones given in Dumitriu and Edelman (J. Math. Phys. 43(11):
5830-5847, 2002; J. Math. Phys. 47(11):5830-5847, 2006). We prove here the con-
vergence of the distribution of the eigenvalues and compute the limiting distributions
in some particular cases. We also discuss the limit of fluctuations, which, in a gen-
eral context, turn out to be Gaussian. For the case of several random matrices, we
prove the convergence of the joint moments and the convergence of the fluctuations
to a Gaussian family. The methods involved are based on an elementary result on
sequences of real numbers and a judicious counting of levels of paths.

1 Introduction

Tridiagonalization is a standard procedure in numerical analysis. The advantage of
tridiagonalization is that the eigenvalues do not change under this procedure on one
hand and on the other hand the tridiagonal matrix is easier to study, both numerically
and theoretically.
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180 1. Popescu

The well known GOE, GUE and GSE random matrix models (see [6] for a standard
reference), have the eigenvalue distribution given by the density

1
[T Wi —xjlfe Pz, (1.1)
Zn B L
Pl<i<j<n
for 8 =1,2,4 and Z, g is the corresponding normalization constant.
For g = 2, tridiagonalizing the GUE ensembles, in [3] and [4], the authors arrive
at

["N(O,2) X(m—1)p 0 0O 0...0 0 0 ]
Xn-1p N(0,2) xn—2)p 0 0... 0 0 0
1 0 Xn-2p N(@©0,2) xn-3p0... 0 0 0
1 [P (1.2)
VB |
0 0 0 0 0...x28N@©,2) xp
. O 0 0 0O 0...0 xp  N(QO,2) |

where all entries are independent and - is the x distribution with r degrees of freedom.
Since the tridiagonalization does not change the eigenvalue distribution, it follows that
for this model the eigenvalues have the distribution given by (1.1). Moreover it turns
out that for any arbitrary 8 > 0, the eigenvalue distribution of the model (1.2) is given
by (1.1).

Obviously the models (1.2) are less complex and consequently one should be able
to take advantage of this, particularly in the case of computations of expectations of
traces of powers. In [3,4] the limit distribution and the fluctuations are studied. How-
ever some of the arguments used there rely on the particular form of the model and
it’s not clear weather these particular properties are really needed for the convergence
and fluctuations.

Another model which is discussed in the literature is the Wigner ensemble which
appeared for the first time in [ 14, 15]. These are symmetric random matrices with upper
diagonal entries independent of one another with mean zero and the same variance.
For these ensembles, Wigner himself proved a form of convergence of the distribution
of eigenvalues to the semicircle law. The main method available here to study the
limiting eigenvalue distribution and fluctuations is so called moment method which
consists in expanding the traces of powers and counting the contributing terms. There
are various sources using this method, among the so many we mention for instance
[9] and the survey paper [2] for various combinatorial but also analytic approaches.
For the problem of fluctuations from the limiting distribution, a very general form can
be found in [1]. Another use of the moment problem is in [8] for universality at the
edge of the spectrum.

In the context of tridiagonal models we would like to introduce and discuss the
analog of the Wigner ensembles and prove the convergence of the distribution of the
eigenvalues and the fluctuations using the method of moments. We show a nice and
clean combinatorial way of doing this.
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General tridiagonal random matrix models, limiting distributions and fluctuations 181

At first, these models may seem to be an extension in form only. There are many
reason we want to study these. The first one is that these seem to be the natural ana-
log of the Wigner ensembles for the tridiagonal ensembles. It turns out that these
ensembles obey nice properties as convergence of the empirical distribution of the
eigenvalues and the fluctuations converging to a Gaussian family. Thus these can be
seen as another universality property. The second reason, the main one is that tridiag-
onalization of a Wiegner ensemble outputs a random tridiagonal matrix. We are still
far from understanding these tridiagonal matrices due to the fact that the entries of
the resulting matrix are no longer independent. What we try here is to study models
in which the entries are independent with the hope that these will shed light on the
more intricate case with dependencies. The third reason is connected to the following
problem. Take a band matrix of width growing with the size of the matrix. These
models have been studied in the literature in some situations, but there are various
cases where not much is known. Such case is the one in which the band width is the
square root of the matrix size. To the knowledge of the author it appears that the con-
vergence of the empirical distribution is not known. The tridiagonalization of such an
ensemble produces a matrix whose entries have strong dependencies but we believe
that studying these will bring to light some interesting phenomena.

Our main matrix model in this paper is given by

" d, bp_1 O 0 0...000
by_1dy—1bp— 0 0...0 00
0 byody2b,30...0 00
Ap = | e (1.3)

where the entries are independent random variables. In particular if {d,}’_, is a
sequence of iid normal random variables and b, = xng/y/B, then we get (1.2). One
of the main properties used in [3,4] to study the limiting eigenvalue distribution and
the fluctuation is the simple fact that x, — +/r converges in distribution to N (0, 1/2).
Rephrased, it implies that in distribution sense

lim b,//n = 1. (1.4)
n—oo

This together with the fact that d,, are iid with finite moments, turn out to be sufficient
for proving the convergence of the eigenvalues to the semicircle law for the rescaled
matrix X,, = \/LZA,I.

In what follows, for any matrix ¥ = (yi,j);l,j:p we use Tr,(Y) = D7, yii for
the full trace and tr, (Y) = % Z?:l yi,i for the reduced trace.

To outline the idea of this paper in one instance, namely the convergence in moments
of the eigenvalue distribution, let us take the trace of the fourth moment of X,,, which is
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182 1. Popescu

1
4
trp (X)) = n_3 2 . Qiy,irQin,i30i3,i4 iy, iy -

1<iy,iz,i3,i4<n

We want to show that this converges. Here g; ; are the entries of the matrix A,. Now
since the matrix A, is tridiagonal, these terms are zero for |i,, —i,+1|>2for 1 <u <4
withis =i1. Hence the only nonzero contribution is given by the sequences (i1, iz, i3, i4)
with |i,, —i,41| < L. Let us call these sequences admissible. Now we rewrite

n

1
4
trn (Xp) = -3 > > iy in Qi i3 iz iy Dig i1 » (1.5)

p=11<iy,i>,i3,i4<n admissible
max(iy,i2,i3,i4)=p

Since the indices i1, i2, i3, i4 are in within finite distance from one another, for p larger
than 3, the sum

Sp = Z Qi iy Ain,i3Ai3,isAig,iy
1<iy,i,i3,i4<n admissible
max(i,i2,i3,i4)=p
= z Aiy i Ain,i3Aiz,is Aig,i
p—2<iy,i7,i3,is<p admissible
max(i,i,i3,i4)=p

depends only on p and not on n and
1 n
4 —
Eltr, (X;)] = — Z‘;]E[S,,].
[7:

In the limit, for large n, one can ignore from the above sum, the terms E[S], E[S>]
and E[S3] or any finite number of them. The key to our computations is the following
simple result on sequences:

Applying this tox, = E[S], one reduces the computation of the limit of E[tr, (X ,’j )]to
li ! E[S,]
im — .
p—>00 p2 P

Next, we notice that iy = j; + p,io = jo + p, i3 = j3+ p and iy = j4 + p, with
lju — Ju+1] < 1,1 <u <4, js = ji and rewrite

Sp = Z Ajy+p,jr+pQjar+p, j3+pLjz+p,jatpLjs+tp, j1+p
J1,J2,J3,j4<0 admissible
max(j1,j2,/j3,j4)=0
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General tridiagonal random matrix models, limiting distributions and fluctuations 183

and the limit of E[S,]/ p? reduces to the ones of the form

1
lim Elaj+p. jo+p@ja+p. js+pdjs+p. jatpja+p. ji+pl- *)

p— 00 p2
If ju = juyi.thenaj, p ..\ +p = dj,+p, while for the case | j, — ju+1| = 1, we have
Ajytp,jus1+p = bj,+p, hence if at least one of the situations j, = j,41 occur, (1.4)
forces the limit in (*) to be 0. This means that the only contributing terms are those
with all consecutive j’s different. This happens if and only if (ji, j2, /3, j4, j1) is one
of the following (see Fig. 1)

y1=1(0,-1,0,-1,0), r2=(0,-1,-2,-1,0), y3=(-1,0,-1,0,-1),
V4=(_1,_2,_1,0,_1)» ysz(_lv()’_la_z’_l)’ )/6:(_2’_15 07_17_2)~
(1.6)

For each of these strings, one can compute the limit. For instance, in the case of
y1 = (0, —1,0, —1,0), according to (1.4),

1 1
lim —E[a; bl i Qi ; = lim —E[p* =1.
P00 pz [ J1tps 2+ p4ja+p, j3+pYj3+p, jatp ./4+[7Jl+[7] P00 pz [ p—l]

Similarly we get 1 for all the other terms corresponding to these six strings, therefore
one gets

lim Eftr,(XH] = 2,
n—oo

which is the fourth moment of the semicircular law %]1[_2’2] (x)vV4 — xZdx.

N\ RN /L NN\

(d) 74 (e) Y5 ® 6
Fig. 1 Paths y from 1.6
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184 1. Popescu

For fluctuations, the general statement is give in Theorem 3. To be in tune with the
convergence discussed thus far, we want to show how one can deal with fluctuations
on the following calculation:

tim [ (Tr, (X;) — E[Tr, (X3)?]

n—oo

Using 1.5, we can write (neglecting a finite number of terms)

1 n
E[(Tr,,(x,‘j)—E[Trn(xi))z] ~ = > Spq. where
P.q=1

4
Spq = E (E Haiuviz4+lai[,,i;+l

iy, u=1:4 admissible, max (i, )=p u=1
i;,,u=1:4 admissible, max(i;,)=¢

f 4
—-E |:H aiu,iu+1:| E |:H a"lu"z;+1i| )
u=1 u=l

where is = iy and i5 = i].

Combining the independence of the entries with the expectation ,we obtain that
Sp.q = 0if |p—g| > 2. Notice also that S, ; depends only on p and g for [p—¢q| < 1
and not on n. Therefore, using the following elementary fact

X 1 < M
p1l>00 p3 M nli>oo n4 pzp xp 4 ’
.

it suffices to deal with

.S
lim -4

forq = p orqg = p+£ 1. We can assume that p > g, otherwise we can simply reverse
the order of p and g for the following argument. Using the same route as before for
the computation of the limit, it suffices to find

4
) 1
llm _3 E H ajll“l‘l’sjlﬂ»l+paj1;+p’j;+l+p

pP—>00 p u_l

4 4
—E [H aju+psju+l+p} E [H ajt/l+p,jl/‘+]+p:| )’ (17)
u=1

u=1

where the strings here ji, j2, j3, jaand ji, j}, j3. j, areadmissible withmax(j,, j,, u =
l...4v=1...4)=0and j5s = ji, ji = j|.
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General tridiagonal random matrix models, limiting distributions and fluctuations 185

Any appearance of equal consecutive indices in the sequence ji, j2, j3, ja, j1 Or
Ji+ Jbs J4» J4» Ji» forces another appearance of consecutive indices and such an occur-
rence means that at least two of the entries in the above limit contains diagonal term.
Since the diagonal terms are bounded (in moments), this forces the above limit to be 0.

This implies that the entries in the limit (1.7) are from the subdiagonals only and
(j1, j2. J3+ J4, J1) is one of the paths y, in (1.6) and (j|, j3, j3, js. ji) is one of the
paths y, or ¥, — 1. Let us assume for simplicity that we deal with the model in
which b, has a x,g/+/p distribution. Using the fact that x, — /r ~ N(0,1/2) in
distribution and moments sense, one gets that for fixed k,/ > 1, cov(bk , b;) ~
kip*+=2/2 g=(k+D/2 14 Using this, one can compute the limit above. For example,
if (1. o J3 Ja j1) = va and (. jb, i J4 J1) = v3 — 1. then the limit in (1.7) is

1
Jim 3 (E[bf,]E[bgfl] - E[b?,]E[bel]E[b;‘kl])

1
o L m2 4 2 N _~p-3
= pll)ngo P E[bp]cov(bpfl,bpfl) =28"".
Using this argument combined with the judicious counting of the paths, one can
prove that the fluctuations converge to a Gaussian family.
Let us return now to the convergence of the empirical distribution of the model 1.3.
Since there is nothing sacrosanct about (1.4), we can replace it by

Jim E[(by//n)*] = my.,

where my is a given number. Loosely speaking this says that b, /+/n converges in
distribution to a random variable Y with moments given by my. In this case one gets
for y; = (0, —1, 0, —1, 0) that

1 1
lim —E[a; i pdi i ; = lim —E[p* =m
P00 p2 [ J+p, 2+p%ja+p, 3+pYjs+p, jatp J4+P,JI+P] P00 p2 [ p—l] 4

and in general, collecting all terms, one gets

1
lim —E[S,] = 2my + 4m?3.
P00 p2 [ p] 4 2

The contribution of the paths is as follows:

Vi — ma, Yo — m3, Y3 — ma,

2 2 2
Y4 — m2, Y5 — mz, Y6 — mz.

For example y) crosses the line —1/2 exactly 4 times and that corresponds to the index
4 in my4, while the path y» crosses the lines —1/2 and —3/2 twice, each of these giving
an my term with the total contribution being the product of these, namely m%

Here we note that the scaling /7 in (1.4) is not essential for the argument. A more
general treatment is one in which /7 is replaced by n® with & > 0, and on this line
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186 1. Popescu

of ideas the first result we prove is Theorem 1 in Sect. 2 which concerns the conver-
gence of the traces of powers, both in expectation and almost surely. There is also a
combinatorial relationship between the moments of the limiting distribution and the
moments of the limit b, /n® via counting the number of level crossing for paths. We
specialize the limiting distribution in the case b, /n® coverges to 1. As opposed to the
Wigner ensembles we get here different distributions depending on the scaling used
and in some cases even an explicit formula. In Proposition 1 we give examples of
limiting distributions for the case b,/n“ converges to a Bernoulli random variable.
Also worth mentioning here is the fact that the limiting distribution can be described
as the distribution in a certain sense of a random Jacobi operator. At the end of Sect. 2
we also discuss the first order deviation of the expectation of the moments of the
distribution of eigenvalues.

The convergence of the fluctuations is fully discussed in Sect. 3. Under the appro-
priate conditions and after properly scaled, the family {tr, (X ,’i) — Eltr, (X,]i)]}kz 118
shown to converge to a Gaussian family where the covariance can be computed.

In Sect. 4 we extend Theorems 1 and 3 to the cases of multiple tridiagonal ran-
dom matrices. This resembles very much the framework of free probability theory
(see [13] for basics and more) and also the second order freeness discovered by
Speicher and Mingo in [7]. The interesting part would be to define some kind of
cumulant similar to the classical cumulants or to the free cumulant (cf. [10]) and then
define some sort of “independence” via properties of cumulants.

Section 5 gives various situations in which the same arguments can be employed
to extend Theorems 1 and 3. As a particular case is the band diagonal and an eventual
extension to the case in which the entries of the matrix are not independent.

The combinatorics in this paper is one for Dyke paths. In the case of Wigner ensem-
bles there is another combinatorial approach by counting planar graphs as it is done
in [1]. It would be interesting to see the connection between these two combinatorial
methods, though we do not have a clear way of bringing them together.

The study of tridiagonal models in which dependence of the entries is allowed is
very important. This is motivated for once by studying Wigner ensembles via tridiag-
onalization. In this case the independence of the entries of the tridiagonal model is in
general lost. We hope that further study of the tridiagonal models may turn useful in
the study of other random matrix models as for example band models where the band
width grows with the dimension.

The general belief is that the tridiagonal random matrices are easier to understand.
This paper is a materialization of this belief in one instance, the case when the entries
are independent. We hope that further study will turn this belief into a scientific fact.

2 Convergence of the distribution of eigenvalues

Our approach is combinatorial and as such we will deal with the convergence of the
distribution of eigenvalues from the moment points of view. Thus, for a matrix A, the
kth moment of the empirical distribution of eigenvalues is given by the trace of A
Hence, we reduce the study of the convergence of the moments of the distribution of
eigenvalues to the convergence problem of traces of powers of the matrix.
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General tridiagonal random matrix models, limiting distributions and fluctuations 187

We start with the following elementary lemma which will be repeatedly used in
this paper.

Lemmal 1. [fx, is a sequence of real numbers, then for any po > 1,and s > —1,
we have

lxp 1
hmsup—Y <M= hmsup ) Z lxp| < 2.1

p—oo P n— =0 s+ 1

2. If x, is a sequence of real numbers, then for any po > 1, and s > —1, we have

X
Iim — =M — lim Xp =
p—00 p! n— 00 n5+1

2.2)

3.0 If Loy, {ynlie, are sequences of real numbers, then for any po > 1 and
s, t > —1, we have that

limsup@ <M, and limsupM <M

p—oo  PF p—oo P!

o 1 TR MM 03
imsup —— X - )
N TEEEE P G D+ D

pPo=p,q=n

4. If{x, }2021, {vn }2021 are sequences of real numbers, and ry, is a bounded sequence
of positive integer numbers, then for all po, qo and s,t > 0, we have that

limsupM <M, and limsupM <M
p—oo D¢ p—soo D'
1 MM’
= limsup ———~ X P EETe—— 24
mewp e 2L el = ey @9

PO=p.q=n

Before we state the first result of this paper we need to introduce some notations.
A path is a string A = (j1, jo, ..., Jji). A step of A is a pair (j,, ju+1). This is called
up if jy+1 = ju + 1, down if j,41 < j, — 1 and a flat if j, 1 = j,. Fork > 1, set

Pe == Gy jaseeos Jir1) € 200 i = ity lju — Jumil < 1,1 <u <k},

for the set of paths starting and ending at the same level, and denote by P = Up>1Pk
the set of all paths starting and ending at the same level. We call A simply a path and
we can realize this as a piecewise path taking the value j, at u. Now for a given integer
p € Z, we define its shift by p units A + p = (j1 + p, j2 + P, .. ., je+1 + p) and if
R is a set of paths in P, we denote R + p = {A + p : A € R}. Given a subset 2 of
7?2 and a set of numbers {ai,j}d, jyeq we extend this to {a; j}; jez by setting a; j =0
if (i, j) € Z*\Q and a; = ajy jpQjy, js - - - Ajy, iy, - Finally, for a given path A € P,
we set max(A) = max{j,, 1 < u < k}, then [;(X) to be the number of crosses of the
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188 1. Popescu

path A with the line y =i 4+ 1/2 and f; (1) the number of flat steps at level i, that is
the number of pairs j,, j,+1 appearing in A with j, = j,+1 = i. For example, A =
(-2,-2,-3,-2,-2,-1,0,1,1,0,—1, =2, —1, =2) has I_3(1) = 2, 1_,(1) = 4,
—-1(0) =2,lo() =2,f_,(0) =2, (1) = 1, and the other values of [; (1), f; () are
0. Obviously l;+, (A + p) = [; (1) and similarly f;, ,(A + p) = §;(1).

Next, define

Cr ={y = (1, j2s - Jks Jk+1) € P : max(y) =0,
lju = Jut1l = 1for 1 <u <k}
Uy ={y =t j2, - Jko Jier1) € Pe\lg : max(y) = 0}
I ={y = (it as v ke is1) € Pet ji = jip1 =0,
[ju = Jut+1l =1for 1 <u <k}
Nen=A=01 2o s Jir1) €Pr s 1 < jy <, 11 Su <k}
Ap = Ug>1Ak 0
={A = U1, J2s -+ Jko Jk+1) € Ak : max(d) = p,
[ju = Ju+1l =1, for 1 <u <k}
ALy == J2s ooy i Jies) € Aea\AL, s max(h) = p}.

Let us point out a couple of simple properties of these sets. All these paths are strings
which move at any given step from the previous one by at most one unit and end with
the value they started with. I'y is the set of all paths of length k& with only up or down
steps, starting and ending at the same level and staying below the x-axis, touching it
in at least one point. Similarly, I';” is the set of paths of length k with at least one flat
step, starting and ending at the same level and staying below the x-axis all the time but
touching it in at least one point. Ay , is the sets of all paths of length k staying above
the x-axis but below the line y = n. The sets Ay, and A, over 1 < p < n form a
partition of the set Ay ,. Notice here an 1mp0rtant property which will be exploited
below, namely that A —max A € 'y UT",” forany A € P. In particular for p > k/2+1
and any A € A/ch,n we have that A — p € I'y. Similarly, for p > k/2 + 1, and any

A€ Ay, , one has that A — p € T . Therefore, if p > k/2 + 1,

Ap,=Tk+p and A =T, +p. (2.5)

Consequently, A}, and Ay’ are independent of n for p > k/2+ 1. This simple prop-
erty turns out to be an important point in proving the next theorem. Atlast, A, is the col-
lection of all those paths in P between the lines y = 0 and y = n. With these notations,
if A, ={a; j}1<i j<n 1s the matrix given in (1.3), then, for any path A € A,, we have

n—1
H dﬁ ) (H bEi(A)) i (26)
i=1

where we use the convention that 09 = 1.
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General tridiagonal random matrix models, limiting distributions and fluctuations 189

In what follows, for a matrix X = (x;;);, j=1...n, we denote Tr, (X) = ZLl x;; and
tr, = ,l,Tfn-

The first result concerns the convergence of the eigenvalue distribution seen at the
moment level.

Theorem 1 Let o > 0. Assume that all random variables d,, and b,, are independent
and there exists a sequence {my}i>0, with mo = 1 so that

lim E [(bn /n“)"] —my forany k>0 2.7
n—oo
and
supE [|dn|k] < oo forany k> 0. 2.8)
n>1

Denoting X, = n%An, we have that

lim E [trn(x,’g)] — Ly forany k>0, (2.9)
n—oo
and almost surely,
lim tr,(X*) = Ly forany k> 0. (2.10)
n—oo

Moreover, Ly is given by

e [o ifk is odd o1

1 o
ak+1 zyerk [Ticomu) ifkiseven.

Proof Notice that, for k and n fixed, the sets A,‘Z” and A,f”; ,1 < p < n are disjoint
and Uy AL, UAL = Ak

As pointed above after the definitions of various I" and A sets, forn > p > k/2+1,
Af,f; =TI, +pand A,’; » = L'+ p whichimplies that A,fy’nf and Af’ , are independent
of n.

Now we denote the elements of the matrix A, by {a; j}1<;, j<» and then write

k
Try(A}) = z Ajy,ip Qi i3 - - - iy iy »

1<iy,in,...,ix<n
and since g; ; = O for |i — j| > 1, it follows that

Tr,,(Aﬁ):i > a (2.12)

nok
AEAL
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190 1. Popescu

and then

trn (X)) = ak+l Z 2 et 2 @

p=1 \1reAy, reAL

We apply Lemma 1 to compute lim,,_, o E[tr, (X ],j)]. To this end let us set

zax, ST = Z ay, 1<p<n

) —
)‘eAk.n )‘GAIIc’,n

E a,, SP~ = E a,, k/24+1<p.
relk+p AT +p

Since k is fixed and SY'~ = §P~, S¥ = SP fork/2 + 1 < p, combined with the fact
that ignoring a finite number of terms does not change the limit of tr, (X ’,j), we get

n

lim_ Eftr, (X%)] - aiﬂ Z (E[SP1+E[S”7]) | =0, (2.13)
" " p=[k/2]+1

where here [s], stands for the integer part of s.
Here is the key point of the proof. Invoking (2.2) and (2.13) we reduce the compu-
tation of lim,,_, o0 E[tr, (X ’,j)] to the computation of

1 . 1
lim —]E[S” ~] and lim —k]E[S”].
p—>0o0 p¢ n—>o00 p%

To do this, first notice that the sums involved in S” and SP-~ are finite, therefore
everything reduces to computations of the form

1
pleoo o ]E[ay+p]

where y is in I'; or I'y. For the case y € T, according to (2.6), ay4, =

f
(Hj<0 d]ﬂr(;)) (H1<0 blf;)) the products being finite ones. Thus, using the inde-

pendence of the entries we get

sot= (11 [4471) (11eFi])

j<0 i<0
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General tridiagonal random matrix models, limiting distributions and fluctuations 191

Sincey € I';", atleastone f;(y)is > l.OntheotherhandszO ﬂj(y)+zi<0 l;(y) =
k, from which one gets that k — >, _l;(y) > 1 and

1

W]E[dy+p]

(bi+P/pa)|]i()’)‘D’

i<0

<o E[] (HE[
Jj=0

which together with (2.7) and (2.8), yields that for y € ',

1
lim —E[a,;,] = 0. (2.14)

p—00 p“k
Moreover, since for k odd, I'y = @, this also shows that
lim Eftr,(X%)] =0,
n—oo

which is the first part of (2.11). If k is even, p > k/2 and y € I, then a,,, =
i)
Hl<0 prryz ’ and

ﬁ]E[ayﬂ, H]E[ Pt /p (y)].

i<0

From this, (2.7) and (2.2), one gets

Jim p—E[ay+p] [Tmu0)- (2.15)

i<0

which completes the proof of (2.11).

For the almost surely convergence, we use Corollary 1.4.9 from [11], which we
state here for reader’s convenience.

If {X,},>1 is a sequence of independent square integrable random variables and
{wn}fjo=1 is a sequence of real numbers which increases to co as n — oo, then, for any
po > 1,

ad var(X ,) -

Z 5 Pl e oo = — E (Xp —E[X,]) — 0almost surely. (2.16)
w w

p=1 P " p=po

From this, it is very easy to deduce the following.

Let {X,},>1 be a sequence of square integrable random variables such that there is
an integer constantg > Osothatforeachr € {0, 1, ..., g —1}, {X; 15 }n>11s afamily
of independent random variables. Assume also that {wy, },>1 is a sequence of real num-
bers which increases to oo when n — oo and has the property that lim;,—, o szH =1
Under these conditions (2.16) still holds. !
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192 1. Popescu

In our case, we first point out, that almost surely

n

1
. k ,— _
Jim (X)) — —y > (sP+s77) | =0. (2.17)
p=lk/2]+1
Let us notice that for each » € {0, 1,...,k — 1}, {S"7%},~ and {S"+"%~},~, are

sequences of independent random variables. Now we take w,, = n®*!. We show first
that

i var(SP) U Z var(SP-~ ) o

p2ak+2 2ak+2
p=k

which follows once we know that forany y € I'y UT o

i%<oo. )

p=k P

2ﬁ
To prove this, from (2.6), ay+p (H/<0 H;V)) (H, » bl+;)/)) and using (2.7) and

(2.8) one gets that for a certain constant Cy > 0,

E[a 1<Cy for p=>k/2,

2 y+p
potk

which is enough to justify (*) and thus, by (2.16), that

1 - _ -
T D (" —E[S"1+ 8P —E[S"7]) —— 0.

p=lk/2]+1
This together with (2.17), (2.14) and (2.15) prove (2.10). O

Remarks 1 Condition (2.8) can be relaxed under the assumption that Lj are the

—1/(2k)
k

moments of a measure which satisfy Carlemans condition > ;- L < 0o. In

this case, if we replace the condition (2.8) by the condition that

SupEHdn” < 00,

n>1

we can conclude that the empirical distribution of eigenvalues of X, converges to the
measure whose moments are given by Ly.

The proof of this fact is basically given in [2], p. 615 where it is proved that
the diagonal part can be removed. The only essential fact which is needed there is
that SUp =1 P(ldy| > n%€) = o(1) which follows from the above condition and
Chebyshev’s inequality.
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General tridiagonal random matrix models, limiting distributions and fluctuations 193

Corollary 1 Within the notations of the theorem above, assume that my = 1 for any
even k. Then the numbers Ly are the moments of Ullman’s distribution vy (dx) =
ho (x)dx with (a > 0)

1 2 t71+1/ot
ha(x) = ]1[72’2]()6); / ﬁdi
1x1/2

These are obtained as distribution of T* W, where W has the arsine law distribution
(]1[_2’2] (x)ﬁdx) and T is an independent uniform on [0, 1].
In some cases, closed formulae are available, as for example,

2 —
]1172,2]()6)% a=1/4
ha(x) = { =11y ()4 — x2 a=1/2 (2.18)

i log (C+ VA=) Ixl)  a=1,

In particular for the model (1.2), the limiting distribution is the semicircular law.

Proof Since my = 1 for all k even, we have that the products in (2.11) involving m’s
equal one. The number of such terms is given by the number of paths in [y, which
turns out to be (kkz) for k even. One very quick way to see this is that any path y in
'y is perfectly determined by the prescription of the places where the up steps start,
the rest of the positions being filled in with down steps. Since the path must have the
same starting and ending point, it means that there are exactly k/2 up steps. The way
of choosing k/2 positions out of k points is just (kl;z) (Fig. 2). This means that

0 k odd o
Li=1q (* )
Ofll‘ﬁ_)l k even

For k even and o = 1/2 these are the moments of the celebrated semicircle law

ﬁn[fm] (x)v/4 — x2dx.

e i B

@) hyy (b) hypp (c) by
Fig. 2 Density hy fora =1/4,1/2,1
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194 1. Popescu

Even though the semicircle plays and important role here, it is the case « = 0 which

is the most important one. For @« = 0, we have Ly = (kl;z)' One can check directly that
. . _ 1

the n%easu.re having thes.e prope.rtles. is .the .measure Vo (.dx) = ]1[_2’2] (x) mdx.

Now if W is arandom variable with distribution vy and 7" is an independent and uniform

on [0, 1], then T W has the moments given by (*). From here the rest follows by direct

calculations. O

Remarks 2 The system (2.11) is invertible in the sense that for any given sequence Ly,
k even, one can solve uniquely for the sequence my, k even, since the system (2.11) is
a triangular one. To simplify the notations, set My = (ak + 1) L. Then we have for
the first lines of the system (2.11):

My=myg=1
My = 2m»

My =2mg + 4m%
Mg = 2me + 12mgm + 6m%

Mg = 2mg + 16mgmo + 12m421 + 32m4m% + 8m3.

We can solve for m’s in terms of M’s in this case as:

my=My=1
1

my = —

2 ) 2
1

my = 2 (Mg = M3)
1
ms = (4M6 — 12My My + 9M§)

1
ms = (2M8 — 8MgM, — 6M2 + 28MyM3 — 17M§) :

It is of interest a combinatorial interpretation of this inversion. Moreover, one such
interpretation could perhaps lead to an analytic interpretation, one which would allow
characterization of the situation in which the numbers L; are the moments of a real
measure.

Next, we would like to compute the limiting distribution in one particular case in
which b, /n® converges, not to a constant, but to a Bernoulli random variable. The
next proposition also shows that the numbers Lj are true moments of a measure under
some reasonable conditions.

Before we state the main result we introduce a class of infinite random
matrices known somehow in the theory of random operators as the Anderson model
[12]. Assume that {X},},c7 are given bounded iid random variables. Then we define
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General tridiagonal random matrix models, limiting distributions and fluctuations 195

00X2 0 X1 0 0 .ovnnnnn.
.00 X0 0 XoO0 O .......
A=|... 0 0 Xo[0]x;0 0 ... (2.19)
........ 0 0 X1 0X,00.
............ 0 0 X, 0 X300

where the marked element is the (0, 0) element. We can realize this matrix as a sym-
metric random Jacobi operator acting on £2(Z).

Consider the unitary map from U : 2(Z) - L%*(SY),where S' = {z € C: |z| = 1}
is endowed with the uniform measure and U ({a;}icz)(2) = 2 ;7 a;7z'. Then the
matrix A becomes the random operator which is given by A = UAU !

A = Xiz7' + Xim207. (2.20)

Finally if ¢; € ¢£>(Z) is the vector with 1 on the ith component and 0 otherwise, then
—k
Ag’o = <Ak€0, €0>£2(Z) = (A 1, 1)L2(Sl)’

where here 1 is the constant function 1 on S'.

Proposition 1 For o > 0, assume that there is a bounded random variable Y with
moments E[Y 2] = moy, fork > 0. Then there is a bounded random variable Z whose
kth moments are Ly.

The distribution of Z is of the form v(dx) = tf (x)dx+ (1 —1)8g, where) <t < 1
and f is a measurable density function.

Ifa > 0,0 <0 < 1andmy = 0 forall k > 1, then the distribution whose
moments are L, k > 0 is given by

So(dx) 0=0
Voo (dx) = { ve(dx) 0=1 (2.21)
%fe,a(X)dx + %SO(dx) 0<6 <1,
where
(14+6)1 —6) _
f@,a(x) = ﬂ(_z,z)(x)f Z 9N lgN+2(x),
N>1
and for M > 3

[M arccos(|x|/2)/7]

gu(x) = |x|'/*! >

u=1

1
a2l/e| cos(um /M)|V/e

with the convention that Z(l) = 0 and [s] stands for the largest integer < s.
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1 1
0.8 0.8
0.6 0.6
0.4 0.4
-2 -1 1 2 -2 -1 1 2
(@) fos (b) fos.1a (¢) fo.os.1/4

Fig. 3 Density fy,1/4 for & = 0.4,0.6,0.95 and the smooth density /1 /4

o o o o
> o 9

-2 -1 1 2
(a) foau2 (b) f0.6,12 (c) fo.95,1/2

Fig. 4 Density fy, 1/ for 0 = 0.4, 0.6, 0.95 and the smooth semicircular density /1, = % 4 —x2

1 1 -1
(a) f0.4,1 (b) fO.G.l (c) f0.95,1

Fig.5 Density fy 1,60 = 0.4, 0.6, 0.95 with the smooth density /]

Proof Assume that the distribution of Y is a measure p with support in the closed finite
interval /. Consider now the probability space Q2 = [ Z and P = u®Z, the product
probability on 2. We denote by w; the ith component of w. Then, define the Hilbert
space H = {x = {x};cz : x; € L%(Q, P), ZjeZ ||xj||%2(Q’P) < oo} with the scalar
product given by (x,y) = > ;7 E”[x;y;]. On this Hilbert space we consider the
operator A given by

Ax={M;x; 1 +Mj1xj11}jez

for x = {x;};cz. Here M; : L%(Q2, P) — L%(Q2, P) is the multiplication operator
given by (M;x)(®) = w;x(w) forany x € L?(Q, P). Since [ is a closed finite interval,
M is a bounded operator and this in turn yields that the operator A is also a bounded
selfadjoint operator (Figs. 3, 4, 5).

Now we define e = {e} ez, where e; = 1if j = 0 and e; = 0 otherwise. We will
prove that
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0 k odd

(Afe,e) =
2 yery [licomi) keven

(2.22)

To do this we first take the random variables X; : @ — R given by X;(w) = w;.
The set {X;};cz is a set of iid random variables with distribution p. With the random
infinite matrix .4 given by (2.19), notice that

(Afe, ) = ELAG o] (2.23)

which means that we first compute formally .A* and then take expectation of the (0, 0)
component. From this, if we use a; ; for the (i, j) entry of A, then

0 k odd

Zyer,? a, keven.

k
Apo = Z A0,iy Aiy,ipQin iz * " Aig,0 = [

01,02, ik €L

This, together with the fact that a; ;11 = X;41, ai—1,; = X;, that {X;};c7 are iid with
distribution 1 and a moment of thinking, gives for k even,

ELASo) = D [TEX 1= 2" [Tmun. (2.24)

yerVick yeli<0

which proves (2.22).

On the other hand, since A is a bounded selfadjoint operator, we can take its spec-
tral measure £(dt) and then @w (dt) = (£(dt)e, e). We then have that fR t*w (dr) =
(Ake, e). Now if we take a random variable W with distribution & and T an inde-
pendent uniform random variable on [0, 1], one can check, using (2.22) and (2.11),
that Z = T“W has the moments L. It is an easy exercise to verify that the gen-
eral form of such distributions is v(dx) = 7tf(x)dx + (1 — 1)d9 with
T € [0, 1].

For the second part, the case & = 0 is obvious. Even though the case 6 = 1 is cov-
ered by Corollary 1, we want to employ the arguments used in this proof to reprove it.
The random variable Y in this case is simply the constant 1. Therefore, the operator
A becomes a nonrandom operator and, using the representation given by (2.20), is
in fact the multiplication with z + z~! on L2(S'). Consequently the spectrum is
[—2, 2] and

2

_ 1
/xk,o(dx) — (A", 1) 12¢s1 =/(z+z_1)kdz = E/Zk(coss)kds
st 0
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which results with w (dx) = vy = %1[,2,2] (X)J4+7 given in Corrolary 1 . From this
a simple calculation shows that the distribution of 7% W where W has distribution &
is the v, given in Corrolary 1.

Next, if mor = 6 for all k > 1, it is easy to see that ¥ whose even moments are
moy is a Bernoulli random variable with probability 6 of 1 and probability 1 — 6
of 0. Thus, the matrix A has elements 0 or 1. To compute the (0, 0) entry of Ak,
we notice first that (observing when the first O appears in the sequences {X;};<o and

{Xi}i=0)

ELAS ol = D (A o8 (1 = 6)%,

I,m>0
where A; ;, is the matrix A, with Xo = X_; =---=X_,, =1, X_,,—1 = 0 and
X1 =X2=---=X; =1, X;41 = 0. Thus, the matrix A ,, is a block matrix of the
form
C 0 0
Aim=10 Bim 0
0 0 D,
with the square matrix
B P ]
1 0 1...............
Bim=1|..... 1 o] 1...... :
............. 1 0 1
T 1 0

the marked entry being the (0, 0) entry of the matrix .A4; ,, and counting from it, there
are [ + 1 rows to the top and m rows to the bottom. 13; ,,, is a m + [ + 1 tridiagonal
matrix with only 1 on the upper and lower sub-diagonals and O otherwise. The key
point is the fact that for N > 0,

DAt —0)2 =N (1 -0 D B =0"(1—0)>TryBY.

I,m>0 [,m>0
I+m=N [+m=N

where By is any of the (N + 1) x (N + 1) matrices B; , with [ +m = N and the
marked entry removed. On the other hand,
N
TryBY, = Znﬁ‘N,

u=1
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where n, ny are the eigenvalues counted with their multiplicity. Now, if gy (x) =
det(xIy — By) is the characteristic polynomial of By, an easy induction argument
shows that

gn(x) = xgn—1(x) —gn—2(x),

with go(x) = x and g (x) = x? — 1. These, up to scaling, are the Chebyshev polyno-
mials of the second kind. Precisely, we have gy (x) = Uy +1 (’7‘). As it’s well known,

the roots of Uy are cos (;—L), 1 < u < N and this shows that the eigenvalues of
By are
um
Nu,N = 2cos N2 forl <u <N +1.
From here one gets that
N+1
E[AS ) =1 =02 D> 6N > nk = /ka(dx)
N=>0 u=1
where
N+1
w = 1—0)%6"s o\
% u;( ) 2cos(N+2)

If this is the distribution of W and T is uniform on [0, 1), then T* W has the distribution
given by

1-6
0+1

Voo (dx) = do(dx)

N+1 |x|1/a—10N(1_9)2

+ Z Z a21/a+1|cos(1\l]4_j:2)|l/a

N>1u=lu#(N+2)/2

XA o cosqur /(N+2))1,21 cos(ur /(N+2))p) (K)dX
and from here, rearrangements bring this to the form given in (2.21). O
Theorem 1 gives the zero order convergence in moments of the distribution of
eigenvalues. Here we are interested in the first order convergence. The statement can

be made more general, but for the sake of simplicity, we give the next theorem in the
following form.
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Theorem 2 Suppose that the conditions (2.7) and (2.8) from Theorem 1 hold. In
addition, assume that there exist 0 < v < min(1, 2«), and numbers o4 and & so that

lim 0 (E[(by/n)] = mi) =&, k=0, (2.25)

n—0o0

Eld,] =0, Vn, and lim var[d,] = o} (2.26)
n—o0

then, lim,,_, oo n" (E[trn (Xfl)] - Lk) is given by

ak_l—uﬂ 2yery 22i<0 600 [icoizj Mu0)s keven >2, v < min(l, 2a)
ar=or1 (94 2y ez [lico M)

+ Zyel"k Zj<05”,~(y) Hi<0,i;éj m[li(y)), keven >2, v=2a <1
(akT_H)Lk + % zyel"k (Zi<0i”i(y)) Hj<0m[|j()/)

+ax 2 yery 22j<0 8100 Hico,iej M) keven =2, v=1<2a

k+2) 1 i
(TLk +1 > yely (Z j<0]“j()’)) [Ticomuo)
2 2
+ %04 Zyerff [Ticomu)

2
+ 7 2 yer 22i<0&500 [icoiej Mu ) keven =2, v=1=2a
0, k odd, ork =0,

(2.27)

where F,%’f is the set of paths in T~ with exactly two flat steps, both at the same level.

Proof We use the notations from Theorem 1. Notice first that,

tim ¥ (B, 01— o S (BISTI+EIS” ) | =0,
S s B

Thus, to prove (2.27) it suffices to find

n

. 1 _
nll)ﬂgo ak—vFT Z E[SP1+ E[S?71] — nakHLk )
p=[k/2]+1

and, according to Lemma 1 and the definition of Ly, it reduces to

lim
p—00 pakfu

Elay+p] fory eI, *)

and y € I’k

1 ak+1 _ —1 ak+1
lim —(E[ayﬂ,]— (p (p=1) )Hmu,.(y>). (%)
i<0

p—00 p“k—U ak + 1
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Finally this can be done by using (2.6). If y € I, then,

m [1E [dfﬁ(z)] (HE [(b,-ﬂ/pa)ﬂi(y)])‘

Jj=<0 i<0

iy Blay+pl =

If y has exactly one flat step, this quantity is zero because E[d,,] = O for all n. On the
other hand if y has exactly two flat steps, then for v < 2« this whole term goes to 0
with p. In the case y has more than 3 flat steps, one gets that > =<0 f;(y) = 3and so
again the term goes to 0. The only case we get something nonzero is the case when
v = 2« and y has exactly two flat steps at the same level. In this case, according to
(2.26), one has that

1
lim ——
p—>00 pak—u

2
Elay +p] = oy Hm”i(l/)'
i<0

Summing over all possible paths in I‘,%’f,

2 —_—
lim E[SP] = %a Zyel“z’_ [licomig), v=>2a
P pe 0, otherwise.
1 (pozk—H - (P _ 1)ak+1)
pek—v (]E[ay+p] - T i<0mﬂi(y))

1 () k
= pak—u (HE[”i+H_Pa [Tme

i<0 i<0

pozk+1 _ (P _ l)otk-i-l _ (Olk + 1)pozk
Hm”i(l/)

%
(k + 1)pet i<0

Iy )

=> (]IE _ htp (g bm) B I
B (p + i) P peli(v) M (y) M, (y)

i<0 \h<i i<g

pak+l _ (P _ l)ock+l — (ak + l)p(xk

- — miy; (y)
k
(O[k + l)pa ? i<0
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Zj<0 1,00 Hi<0,i;éjmﬂi()/)’ v<l
k .
o (T +adoili(y) [1;<0m1;00),
+Z,/<0 1,00 Hi<0,i;ﬁjm”i(}’) v=1
The rest of (2.27) follows. O

Remarks 3 'We mention here the following equalities for k even k > 2,

Ty | = k2k=3,
> i) = k2, )
yely
Z Zil]l-(y) = —k2k T,
yely i<0

Applying these to the model from (1.2), we get that lim,,, oo 1 (E[tr,, (X)]— ﬁ (kl;z))

= (g — 1)(2"_l — (kljz)) which are the moments of the measure %(8_2 + &) —

]1[_2’2] (x)ﬁdx. This is [3, Lemma 2.20] and we just reproved it.

The proof of the first equation can be done by counting all the paths by directly. The
second equation can be proved using the model A(¢) (2.19) with X; = 1 + tY; where
Y; is a sequence of iid N (0, 1) and use (2.24) to get that the identity we are looking
at is just the coefficient of > of E[(A(t))go]. Then we can write A(t) = B + ¢C,
where B is the matrix with 1 on the subdiagonals and C has iid normal N (0, 1) on
the subdiagonals. One can compute the coefficient of 72 in the kth power of A() as
a product of the form BX1CB*CBY. The powers B¥ can be explicitly computed and
then the rest is simple combinatorics. The proof of the third equality in (*) can be
done in the following way. First realize that the term Zi <0 ili(y) is the negative area
between the path and the x-axis. Then one can decompose any path in I'y as two Dyke
paths with certain properties. Finally, one can count the number of paths with a certain
area (see [5, Proposition 6]), together with manipulations of generating functions to
get the equality in there.

The outlined proofs are long and ad hoc. More direct and natural combinatorial
proofs are desirable though.

3 Fluctuations

Under the conditions in Theorem 1 we have almost surely the convergence of the dis-
tribution of the eigenvalues of X,. In this section we are interested in the “fluctuations”
from the limiting distribution. Theorem 1, states that almost surely,

lim (tr,,Xﬁ — E[trnXﬁ]) =0.

n—oo

Next we are interested in how this happens. More precisely, what is the right factor we
should multiply tr,, X ,’i — E[tr, X ,’j ] with to make this converge to something? Assume
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that we multiply this by n7 with n > 0. What is going to be the right n? Let us take a
look at the case k = 2. Then,

n n—1
' (X2 — Bl X21) = n]++a_n > (42 - Ela2) +# > (v -Ew2).
Jj=1 j=1

Now, for any 0 < n < 2¢, the first sum of this goes to 0 by the Strong Law of Large
Numbers. The other sum can be written as

1 n—1 n—1

1

2 27} — 2oy

nl+2a—n Z (bj B ]E[bj]) T pl2a—n ZJ °Y;
J=1 j=1

with ¥; = b?/jz"‘ — E[b?/jz‘)‘].

Let us assume that {Y;}72, is a sequence of independent random variables so that
in distribution sense jY; ~ U for some « > € > 0 and U a zero mean random
variable with variance var(U) > 0. Then we are looking at the condition that

1 n—1 1 n—1
_ 20y o—€7r7.
Zy = nl+2a—n Z‘I Y] nl+2a—n ZJ UJ
j=1 j=1

is converging in distribution (here {U} are iid with the same distribution as U). Take
¥ (x) so that the characteristic function of U is E[¢/'V] = ¢/¥® with ¥ (0) = 0 and
¥’ (0) = 0. The condition of convergence is translated roughly as convergence when
n — oo of

n—1

Z‘/’ (tha—e/nHQoz—r;) _

j=1

Since U is not constant 0, this implies that 1" (0) = var(U) > 0. Now, Taylor expan-
sion ¥ (x) = ¥ (0)x%/2 + O(x?) yields

n—1 n—1
Da— _ 1 da—
ZW(UZ“ €/n1+20t n) ~ Var(U)t2n2+4a72n 2‘14“ 26/2
j=I j=1
ar(U)r* —
- 2(\1/+4D(72€) n=1/2+¢
0oroo otherwise.

Therefore the choice in this case is obviously n = 1/2 + €. Moreover, this also shows
that the limiting distribution of Z,, is normal.
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Another way of guessing 1 is from the general statements of CLT, for variables
which are not necessarily identical.

Before we state the next result, we need some definitions.

We say that the paths A1, Ap € P do not share a level if forany i € Z, 1;(A1) #0
implies [; (X2) = 0, [;(A2) # 0 implies [;(A1) = 0 and similarly for the flat levels,
t;(A1) # Oimplies f;(A) = 0 and ; (X2) # O implies f; (A1) = 0. We say that A1 and
Ay share a level if there is an i so that both [; (A1) are [; (A2) not zero or both f; (11)
and f; (A7) are not zero.

Fork,l > 1, we set I'(k, [) by

[{(y1, y2) € Px x P, : max(max(y),

max(y2)) =0, y1, ¥
share a level and have no flat steps}, if k, [ even G.1)
{(y1, ¥2) € Pr x P; : max(max(yy), '

max(y2)) =0, y1, ¥2
have exactly one flat step each and is shared}, ifk, [ odd.

Remarks 4 For k,l odd, the number of paths in I'(k, /) is the number of paths of
(v1, y2) € Px x P1, y1, y2 having exactly one flat step on the x-axis. These pairs can
be constructed as follows. Pick two paths y| and y, of length k — 1 and I — 1 with
only up or down steps. Then insert any flat step at any level and move the paths so

that the level steps are on the x-axis. For y/, there are (12;11) choices for the path and k
2

ways of inserting the flat step. Similarly for y;, so the total number of paths in I'(k, /)
. k—1y (1—1

Theorem 3 In addition to conditions (2.7) and (2.8) of Theorem 1, assume that,

lim var(d,) = o3, (3.2)
n—o00

and there exists 0 < € < « so that ifzﬁ = n¢ ((b,,/n"‘)k — E[bn/no‘)k]), then for
k,1 > 0 both even, there exists C (k, 1) such that

. k 1Y) _
im_cov (zn, z,,) = C(k, D). (3.3)
and
supE[|zX"] < 00, Vk, m > 1. (3.4)
n>1
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Now set
Dk, 1) =
[ 1
CEFDTT 2201, 1)eN (kD) fork, L even
€=0:= (Hh<0m”h(yl)+”h()/2) - Hh<0m”h(7/|)mﬂh(3/2)) ’
0, otherwise.
K+
ms Cliy,li(2))
02 e - oo |a@EDTT2 Zonmern 2Zi<o ooy Jor k. Leven
0, otherwise.
mk+ Ci(yn).li (1)
2D 2o p)el (kD) 2oi<0 T, ) fork, L even
2
€ =a:= { KoIm5"? p—1y -1
L (k%)(%)’ fork,l odd,
0 otherwise.

(3.5)

For any polynomial P(x) = wo + wix + --- + wnxN denote S,(P) = n€tl/2
(trn (P (X)) — E[tr, (P(Xn))]). Then

lim S,(P) = N(0,5(P)?)
n—oo
where

o(P)? = > waw Dk, ).
k,>1

In particular, if S, (k) = Sy (xk), this implies that the family {S, (k)}x>1 converges in
moments to a Gaussian family {S(k)}r>1 with covariance function D(k, 1) and

lim S, (k) = N (O, of) (3.6)

where o} = D(k, k).

Remarks 5 Let us point out that in the case 0 < € < «, condition (3.3) implies in

particular that my_; = mym; for any k, [ even. This in turn means that m; = mg/ 2 for
any k even, or that bﬁ /n** —— my in distribution and hence in probability too.
n—oo

Proof Write

P = D wgwigowi SakDSa k) . Su k). (B
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206 1. Popescu

Since there‘is a finite number of terms in the above sum, to study the behavior of
E [(Sn(P))J], it suffices to deal with

Tim B[S, (k)8 (K2) ... S, (k)]

for a given sequence ki, ka, ..., k;. Now, since

1
Sn(k) = m Z (an — Ela,])
AEAL

we have

B[Sy (k1)Sn(ka) .. S (k)]

1
= > E[(ax, ~Elay, (@, —Elay,)) . .. (ar; —Ela, )]

= nzljzl(o[k,-+(1—2e)/2)A

iEAki.n
I<i<j

(3.8)

Next we define a notion of connectedness for paths. A set of paths C is called con-
nected if for any two paths A and A" in C there are paths A = A1, A2,..., A, = A in
C so that A;, A; 41 share at least a level. Otherwise we say that C is not connected or
simply disconnected. The notion of connectedness in this context is an equivalence
relation. Therefore any set C can be written as a disjoint union C{UC - - -U C)p, where
each C; is connected. The sets Cy, Ca, ..., Cp are called the connected components
of C. If A is a path in C, then the connected component containing it is the set of
all paths which can be connected with it. In particular any two paths from different
components do not share a level.

With this concept at hand, we return to (3.8) and split the sum in sums over all con-
nected components. Then we organize the connected components in the following way.
For a given partition A of {1, 2, ..., j}, we consider CZ the subset of (A1, A2, ..., A})
with A; € Ay, so that Cf = {A; : i € &} are the connected components of C}
where § runs over all elements of A. In other words the connected components of
(A1, A2, ..., ;) are indexed by the subsets § € A. Now, since any two connected
components are disjoint, combined with the independence of the entries of the matrix
A,, justifies the following rewriting

E [Sy(k)Sutka) ... Sy (k)]

1
N n2{=](aki+(172e)/2) Z Z H E H (a,, — Elax])

A (M,)\z,,..,)»j)ecz SeA AECS’
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Next we fix a partition A of {1, 2, ..., j}. The idea is to find the limit of

1
UA = : E a;, — Ela
Xl ekit-20))2) Z H H( » ~ Ela)

(K],kz,...,kj)ecg SeA )LECg

To clarify and explain the main idea let us introduce first some notations. For a given
k = (ki1,k2,...,k;) and A apartition of {1, 2, ..., j}, we set

Fk:A) ==y -2 Vj) Yu € Pr,, andford € A, mag((max(yu)) =0,
ue

{yu : u € 8} 1is a connected set}.

This is the set of all paths under the x-axis so that by isolating the paths indexed by 4§,
we obtain a connected set with the maximum of all heights being 0.

Notice thatforagiven A, the setI'(k : A)isactually in a one-to-one correspondence
with the set xseal'(Ks : &), where Ks is the vector k with the components which do
not belong to § removed. Obviously there is a finite number of elements in I'(k : A).
Now if we take a connected component in C§, with max,cs(max(i,)) = ps, then
((Ay = ps)ues)sen € Xseal (ks : 8). Ignoring eventually a finite number of terms in
the expression of U2, the limit of U2 is the same as the limit of

1

A__ —
= 2 b ey @k +(1-26)/2) 2. HE[H(“V”W ]E[“V”PED]

Fel(k:A) (ps)sen€n (M) deA  Lues

where the set 2, (I') = {(ps)sea : n = ps = po, sothat{ys + ps} O {yy + ps'} =
@, for any § # &'}, po being a fixed large number depending only on y and k. If the
set A has just one element, namely the whole set {1, 2, ..., j}, then the above sum
takes the simpler form

1 n
A _ _
Vn - Z Z 6(112_4',Vj}(aku+(1*25)/2) Z E H (aVu+p ]E[aVLH”P])

Felk:a) 1" p=po | ue{l,2,...j}

Using Lemma 1, we can find this limit once one can compute the following

1
W() = lim E (ay,+p — Elay,+p])
P00 p(zueu’zwuﬂ(aku+(l726)/2))71 ue{ll;,[_,_,j} Vutp Yutp

(3.9)

Once we know this, we can go back to the case of an arbitrary partition A and use part
3 and 4 of Lemma 1 to compute the limit of V,*. Here are the formulae. For A with
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208 1. Popescu

just one component {1, 2, ..., j}, we have
2wW(T
lim VA= > @
n— 00 20{|k|+](1 — 2¢)

rerk:A)

with [K| = k1 + k2 + - -- + k;. The general formula which follows from this and a
repeated application of Lemma 1 is that for an arbitrary partition A we have

i 2W(ys)
lim U2 = Z H (3.10)
e Fel(k:A) SeA 2 ]ks| + 18](1 — 2¢)

Now we want to compute W(I') whenI" e I'(k : A) and A = {{1,2, ..., j}}.In
the following, for a set 2 we denote the number of its elements by |€2].

Case 1: j = 1. In this case due to the fact that E[(a; — E[a,])] = 0, we get that
UnA = 0 and in particular, W (I") = 0 also.

Case 2: j > 2. We show in this case that W(I") = 0.

To do this we will prove something more general. Namely we show that for a fixed
el(k:A),

j B
E| I @urp—Blayph | = O (pZem @) (3.11)
uef{l,2,....j}

f
For any path y, recall (2.6) which takes the form a,, = (Hng gi(;))

(]_[h -0 bﬂl'f;)), this product being actually a finite one. To make the writing in a

reasonable form for the expansion of the left hand side in (3.11), we rewrite

_ ;i (y)
ayep = [ e}
i€’

where

| < f. | <
iy =17 150 g =l =0
b i>0 _; .

Since the entries are independent, we have

ay+p = Elay+p]

=2 IT e ) (@ — e[ ]) | 11 =[ay] (HEW])

i<0 \g<i—1 i+1>g h<0

o3 (1) (o ) i - ot ( 0 o)

i<0 \g=<0 h<i i+1<h
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which can be rewritten as

ay+p = Elay+p]

= ST (e@m)™ (e —efe@mn )™ (elewmn])™

leZ i€l
with

._1i<l ,_1i=l ,_1i>l
”(Z)_{o i1’ Vl(’)_Io Pl Q(l)_[o i<l

Notice that 7y + v + g = 1, ZieZ vi(i) = 1 forany l € Z and if y € P, then
> icz,mi(y) = k. Using these formulae for y1, y, ..., y;, after multiplying out the
factors, the left hand side in (3.11) becomes

J

> T[T (o)™ (et —eleame]) ™"

1],[2,.‘.,1jEZi€Z u=1
Lm0 T\ o @
< (B[eapsir])

Now, if i < 0, then ¢(i) = d and then (2.8) combined with Holder’s inequality yields
that each product in the above sum with i < 0 is bounded by a constant. If i > 0, then
c(i) = b, m; = l_; and in this case, using Holder’s inequality, (2.7), (3.4) and (3.3)
one can show that

J - : j
m; (Vu @ () m; (Vu) m; (Yu) o ) m;i (Vi) )
E H(C(l)p |t|) ((’)p i~ [C(’)P il ]) ( [C(Z)P il ])
u=1

< CpZim (emi G —eu, )

where the constant C depends only on the paths yy, y2, ..., y;. This means that for
ﬁxedll,lz,...,lj e

[TE ﬁ (c(z)Tz(lul/T ) @, (i) ( (Z)T'(ﬁ/ﬁ' - I:C(l)T'(I)l/L‘l ])wu(i)

i€Z u=1

( [C(’)Tt (lule ])41,, @)

< CpZimt Zimolami(n)—ev, ()
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210 1. Popescu

Next we have

ak, —e if y, contains no flat step
Z (ami(ylt) —evy, (i )) < jak, —a if y, contains exactly one flat step

i>0 ak, —2a if y, contains two or more flat steps.

To see this, one should notice that if y,, does not contain a flat step, then >_,_, m; () =
>0 litvu) = ky, while D°;_ v, (i) = 1. In the case y, has just one flat step then,
ifl, <0, then > ;_oli(yu) = k, — 1 while >,_y v, (/) = 0 and if /, > 0, then
>0 litvu) = ky — 1 while >°;_ v, (i) = 1 which justifies the first part. In the case

¥, has more than one flat step, then Zi>0 I; (vu) < k, —2 and the rest follows. Hence,
since € < «,

El ] @usp—Elayp)
ue{l,2,...,j}
CpZiemi @hu=e)

if any y,, 1 < u < j, has no flat steps
(X @h—e) @@=

Cp if any y,, 1 <u < j, has at most one flat step(3 12)

and at least one has exactly one flat step

J —e))—
Cp(zuzl(ak” E)) * if one of y,,, 1 <u < j, has two or more flat steps.

which suffices to prove (3.11).
Case 3: j = 2. In this case, ' = (yy, 2) and we need to compute

pli_{noo WE[(CM-H? — Elay, +pay,+p — E[ayz+p])]- (3.13)

Here we distinguish the cases € < « and € = «. From Eq. (3.12), we see that for
€ < a, the dominant term is the one involving only sums over the paths with no flat
steps. If € = «, then we need to consider also the paths with exactly one flat step.

First we consider the contribution from the paths with no flat steps. To carry this

out, invoke (2.6) and since there are no flat steps, a,+, = [[, ¢ bﬂl” f;,) and

Ih(y) li (v) li (») 162!
1 = Elay ] =Z(th’+i)(bf+£ -el ) { IT e[a])

i<0 \h<i i+1<h

@ Springer



General tridiagonal random matrix models, limiting distributions and fluctuations 211

from which one gets

(@y+p = Elay+pD(ay,+p — Elay,+p])

_ I (D) + (r2) liy (o) Uy DTN L0y 2)
- Z Hb ((bi1+p _E[bi1+p ]) bi1+p )

i1<ip<0 \h<iy

Iy ] 3l (r2) Uiy (72) Uiy (r2)
X H E[ h+p ]bh+p (bi2+p _E[biz+p ])

i1<h<ip

H E [bhhf;z)] I:bhh—i(-];)]

ir<h

D)+ (v2) b () bi (o) li (v2) li (72)
e (oo ) (ot - 2oty ]) (o - =[]

i<0 \h<i

(epir e )

i<h

h(Vz)-‘r n(y1) 12()/2) ir (72) Uiy (V1)
+ Z H b (( i2>+p [ i2>+p :I) biz-',-p )

ir<i1<0 \h<ip

h(Vz) plOm 11(1’1) liy (1)
x H E h+p h+p) ii+p [bi1+p ])

ir<h<ij

In(v1) h()/z)
H E[ h+p ] [ h+p

ir<h

After taking expectation in this formula, from the independence of the entries, one
arrives at

cov(dy,+p» dyr+p)

(YD) +0n (v2) i) li(r2) (2) )
:z(m[b}m m])cov (s ,bl+;z)(HE[b;+;z] [t ])

i<0 \h<i i<h

from which, according to (3.3), it follows that

lim ek 3 CovV(ay,4p, Ayr4p)

p—o0 p
= Z(Hm”h(V1)+”h(V2))C(”i(yl)’ li (¥2)) (H muh(mmnhm))- (3.14)
i<0 \h<i i<h
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212 1. Popescu

Let us point out that in the case € = 0, one has C(k, ) = my4; — mygm; and in this
case the formula simplifies to the one given in (3.5).

Next we deal with the case in which there are flat steps in y; and/or y». Thus we
need only consider the case € = «. In the first place if only one of them has a flat step

then we may assume that y; has one flat step and y, does not. Then we write a,, 4+, =

I (v2)

desp [0 bihf;,l) where g is the level of the flat step. Hence ay,1, = [],-0b)'},

and then because of the independence of the entries,
CoV (ay 4, yytp) = Eldg+pleov(ay i p, ay+p),

where y| is the path obtained from y; by removing the flat step and gluing together
the remaining parts. As a consequence of the above, the path (y{, y2) does not have
a flat step and for the I' = (y{, y2) we can use (3.14). Taking the limit over p — oo
and keeping in mind that now the path y| has length k| — 1, using the previous step
we get that

1

Jim e 0 (@4pr artp) =0

The third situation here is the one in which both y; and y» have a flat step. In this case

. _ In (1) _ In(v2)
we write ay,+p = dgi+p [[4<0 by, and ay4p = dgyp [ 1420 by, Where g1 and

g2 are the levels of the flat steps in y; and y». Denote by y| and y; the paths obtained
by removing the flat steps. In this case I' = (y, y,) has no flat steps and the length
of y| is k1 — 1, while the length of y, is k; — 1. Now a simple calculation gives

cov(ay,+p» ayy+p) = Bldg +plEldg, +pleoviay i p, ayry )
+cov(dy, 1p. dg,+p)Elay 4 p1Elay,; 1.

Therefore, using (3.14), (3.2) and (2.11), and noting that [; (yl’) = [; (1) and similarly
li (y3) = li (y2) we get (cf. Remark 5),

. 1
A, St k=) OV @ntp: dratp)
2 0 k=2 e
_ 1% [T <0 muno M, 0m) = 05m5 ifg) =g
0 otherwise.

Return with the results of Cases 1, 2 and 3 to (3.10). In computing the limit of (3.8),
realize that we need to worry about only the case j even and partitions A of pairs.
Then I'(k : A) is one-to-one with x{; jyeal’(k;, k). Returning to (3.7), a moment of
thinking gives that

E[(SH(P))f] — Ipairs of {1,2..... j} | D wew D(k. 1)
k,[>1
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Since |pairs of {1, 2, ..., j}| = W}ﬂ)" which are the even moments of the normal
N (0, 1), the rest follows. O

Corollary 2 Assume that for0 < € < o, b, /n® =1+ Z,,/n€, where lim, oo Z,, =
Z is a random variable with finite moments, mean 0 and variance 0%. Then C(k, 1)
klcr% and

kl k 1 .
a(ilﬂ) (k/}?) (11/2) o ifk, [ even
Dk, D = a(k+) ((kfl)/Z) ((171)/2) ife =aandk,l odd
0 otherwise.

In particular CLT holds for the model (1.2).

Proof To compute C(k, [), just notice that (in moments)
(bn /0 ~ 1 4+kZy/n® + O(1/n*),

from which the formula of C(k, [).
For the rest, there is only one thing we need to do, namely compute

Z Z i (vl (v2).

(y1,y2)€T(k,1) i <0

To carry this out, we fist realize the pairs (y1, y2) € I'(k,[) by fixing y; in 'y and
then “sliding” up and down another fixed ¢ € I, to justify that

DD =D D> L +9).

ieZ y1€ly tel gel

Fori and ¢ € Iy, quz l; (¢ + g) = [ and since there are (152) paths in Iy, the rest
follows. O

4 A flavor of free probability theory
Given independent tridiagonal matrices A, A2, ..., A;», one can ask about the

joint distribution in the moment sense. More precisely, is it true that (here X, , =
i Aun)
7 .
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lim tr, (X;, n Xiyn ... Xi n) exists forany iy, i, ..., iy?
n—oQ )

The answer is yes, but before we do that we need to give a definition. We think about the
setC ={1,2,...,r}asasetof colors. Then, for a string of colors ¢ = (i, iz, . .., ik),
from the set C we define

I'f = {y € I'x : each edge jiy, ju+1 is colored with i, }.

For a given color # € C, and a colored path y € I'f, we define [ (y) as the number
of crossings of the line i + 1/2 with the steps of y colored with ». Similarly ! (y) is
the number of flat steps at level i colored with color u.

Theorem 4 Assume that for each u € C, the entries of the matrix A, , satisfy, for
some o, > 0,

lim E [(bu,n/n"‘“)k] =my i forany k>0

n—o00o

withmy o = 1 and

supE [|du,,,|k] < oo forany k> 0.

n>1

Under these assumptions, if all the entries of the matrices are independent of one
another and ¢ = (i1, i2, ..., i), then

. 1
nli)nolotrn(xil,nxiz,n-~-Xik,n)— G+t Fat 1 z HHmu,ﬂf.‘(y)
yelfueCieZ

where the limit is in expectation and also almost surely.

One possible interpretation of this in term of noncommutative probability theory is
the following. Assume that (X, ¢), (), ¥) are noncommutative probability spaces, i.e.
X, Y are unital algebras over the complex numbers and ¢ : X — C, ¢ : Y — C are
two linear functionals with ¢ (1) = ¥/ (1) = 1. Assume a}, a5, . .. a; are noncommu-
tative random variables on ) such that w((a,;)k ) = my k. Then the joint distribution
of aj, as, ..., a; is described by

1 AN
b(aia;, . ..a;) = § orret Tt zyerf [uee icz v (@) )) keven
iy . a) =

)
0 k odd. (
Note here that this dependence involves m,, ; for k odd as well, as opposed to the
defining relationship from (2.11) which involved only my for k even.

Take for example the case of just two such random matrices. Rescale things out to
have a nicer appearance to ¢ = (] + oy + 1)¢. Let us take two random variables
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a, b. Then, ¢ of a product of odd length in a, b is 0, while for products of even length
we have (ignore here the presence of o and oy or rescale the functional ¢),

¢@@®) =2y ((@)?)
P (b*) =2y ((0)?)
¢(ab) = 2y (@)y (b
p@h) = 2¢((a)%) + 4y ((a)H?
P (b*) =2y (")) + 4y ((b)H?
¢(abab) =2y (@)Y ((B)?) + 4y @)y )?
¢ (@*b?) = 4y (@)Y (b)) + 29 (a") Y (b')?
P(@’b) = 29 ((a")) Y (b') + 4y (@)Y @)y ().

From this it is quite clear that, with respect to ¢, the moments of a and b alone do
not determine their joint moments. However, imposing the condition that y (a**1) =
w(b%“) = 0 for any k > 0, one can do this. For example in this case we have

¢(ab) =0
1
¢ (abab) = §¢(a2)¢<b2)

¢ (@*b*) = p(a>p(b?)
¢(a’b) = 0.

Another view at these things is the following. Assume that @’ and b’ are indepen-
dent random variables and the functional i is just the expectation. Then we consider
sequences of iid random variables {X;};c7 and {Y;};c7 whose distributions are given
by the distributions of @’ and &’. Consider then the operators A and B given in (2.19).
Now if X is the algebra of infinite dimensional random matrices like A and the func-
tional ¢ on the algebra generated by A and B is given by E[P (A, B)o ol, for any
noncommutative polynomial P in two variables, then the joint distribution of A and
B is given by (*).

Returning to the general situation from (*), we want to point out that in the case
that the variables a], are symmetric, then the noncommutative joint moments of
ai,az, ...,ap are given in terms of the individual moments of ay, as, ..., a;. This
follows from the fact that all the my’s involved in the joint moments have k even and
according to Remark 2 these can be expressed back in terms of the moments of the
variables a; .

We can call these variable “independent” in a certain way and interpret this fact
via the relationship between the joint moments and the individual moments of each
variable. This can be seen by introducing some kind of cumulant and express this
“independence” as a property of the cumulant. In the classical or free cases of inde-
pendence, t this corresponds to the simple fact that the joint cumulants are the sum of
the cumulants of the individual variables.
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Finally if all the moments m; = 1, then the matrices (X1 ,, X2, ..., X,,) con-
verges in distribution to (S, S, ..., S) where S is a semicircular random variable,
something not very interesting though but due to the fact that the coloring does not
play any role here. However if the moments mj are not constant equal to 1, then the
coloring does play an essential role.

There is also a fluctuation result in this context as follows.

Theorem 5 Assume that in addition to the properties in the above theorem we have
that for some 0 < €, < ay,

lim 1% cov((by.n/n*)~, (byn/n*)") = Culk, 1),
n—oo

E [ (@un 1 = Bl n) D[] < 00, Vheom = 1,

and

lim var(dy, ,) = 0’2
n—oQ

Now, take € = min,—; __,(€,) and set

.....

Suin,iny oo vi) = V2 (00 (Xiy n Xigon -+« Xigon) — Elttn (Xiy n Xigon - - - Xipn)]) -

Then the family {S, (i1, i2,...,ix) : 1 <iy,ia,...,ix < r} converges to a Gaussian
family.

5 Remarks and extensions
5.1 Still tridiagonal models

There are various ways of extending Theorems 1 and 3. We refrained to give it in full
because the proofs would have been overloaded with unnecessary notations and minor
differences.
In both theorems mentioned here we can replace the sequence n% by any sequence
oy, which satisfies the growth rate condition lim,,_, 5, 1
The second extension comes from allowing growth in the dlagonal part Namely if
we replace the condition (2.8) by the condition

lim E[(d,/n?)*] = m|
n—oo

then, if 8 < «, the same conclusion holds in Theorem 1 and the same conclusion under
Theorem 3 with the condition (3.2) replaced by lim,,_, o var(d,/ n?) = o,. However
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if B = «, then the conclusions still hold, nonetheless the formulae of L; become

1 /
Ly = ok + 1 Z Hm”i(}’)mﬂi(}/)’
yelyury i<0

while in Theorem 3, condition (3.2) has to be replaced by
lim_n*cov((dy/n™)", (dy/n)') = C'(k. 1)
n—

the only difference here is that the convariance matrix D (k, [) now depends also on
C’(k,1) and m;.

If B > «, the scaling of the matrix X, has to be changed to X,, = nLﬁAn. The con-
clusions of both theorems hold with the appropriate changes since now the dominating
terms are the ones on the diagonal. For example the (2.11), becomes

— 1 /
T Bk+1k

Ly

We leave to the reader to see how the changes in Theorem 3 have to be done.
Another extension is obtained by dropping the independence of the entries. We can
replace that in Theorem 1 by a more relaxed version.

Remarks 6 Assume that for any y € I't U ', there is a number m,, so that for a
certain o > 0,

1
Jim o Blay ] = my.
Then if X, = & Ay,

lim tr,(X*) = L;
n—00

where Ly is computed by

1
L, = P Z my.
yeryury

In particular one can apply this to the cases when the matrix A is obtained from another
tridiagonal matrix B, which has independent entries by replacing each entry with a
function of the other nearby entries in a finite range. For example one can replace
the nonzero entries in B, by the average of the neighbors nearby it in a finite range.
Another example is the Laguerre 8 models discussed in [3,4], or more general the
models in which each entry in B is replaced by a polynomial in the variables lying in
finite neighborhood of the entry.
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5.2 Band diagonal models

We can extend the results so far to a more general setting by allowing not only one
subdiagonal but more than one. In this case we take symmetric matrices of the form
A, = {a,-,j}l’.l,j:1 so that a; j = O for |i — j| > w, where w is the width of the band
and all entries are independent. Denote by, ; = a; y+;.

In this case we can consider the problem of convergence of the eigenvalues and of
the fluctuations. Before we give this extension, let us define the needed objects.

Set

Zk-‘rl

Cew=1{y =G1,i2,...,0k41) € Dy = g1, iy — iyt < w, max(y) = 0}.

Then we define for any path A, [; j;(1) to be the number of steps iy, i,41 so that
{iy,iy+1} = {i, j}. In particular, for the notations we already used we get [;(1) =
Iii+11(A) and £, () = I;q (V).

Notice here the equivalent of the formula (2.6) as

o I igo] (M)
a) = H bv,i .

i€Z,0<v<w

Theorem 6 Assume that for each 0 < v < w, and given a, > 0, there is m,, i so that

lim;,—s 0o E[(a,-,j/n“v)k] = My k, ifli—jl=v,0p =
sup, El(a;, ; /n®)*] < oo, ifli—jl=v,a <a

with 0 < a = max(ay : 1 < v < w) and the convention that m, o = 1 for any v.
Then, for X,, = nL“A”’ one has that

lim tr,(X*) = L,
n—0oo

both in average and almost surely. Moreover,

1 _
Ly = ak + 1 Z H M 0 (y)>

Y€l wi<0,0<v<w

where

_ my ifa, =«
my = .
0 ifay <a.
This theorem says that in fact those subdiagonals not scaled by the maximum power
n%, do not contribute to the limit Ly.
Let us point out that one can extend this to a statement in which the independence
condition is dropped and one gets a version of Remark 6.
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Similar versions of the first part of Proposition 1 can be proved in this context too.
Namely, if each of the moments (m,, k),‘;il come from the moments of a compactly
supported measure, then the moments L; also come from a compactly supported
measure. In addition, if there are some numbers m,, so that m, ; = m, forall k > 1,
then the corresponding measure with the moments given by Ly is the distribution of
Zﬁ;] my(z° + z7Y) under the Haar measure of the circle S!.

There is also a version of Theorem 3.

Theorem 7 In addition to the conditions given in the above Theorem, assume that for
each O <v < w, there is 0 < €, < ay so that for any k,l > 1

lim_ 7> cov((by.n/n“)", (by.n/n“)") = Culk. D)
n—

and

|

Let € = min(e, : 0 < v < w) and define

P (Bun /1) = Bl by /n) D[] < 00, Viom = 1,

Sp(k) = n€t 2 (tr, (X5) — Eftr, (X5))).

Then the family {S, (k)}}:il converges to a family of Gaussian random variables.
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